
SWEN 262
Engineering of Software Subsystems

Command Pattern

Clipboard Coding*
1. The word processing application shall

allow users to copy the currently
selected text to the system clipboard.
a. Using a Copy option in the Edit menu.
b. Using a keyboard shortcut: CTRL-C
c. Using the Copy option in the context menu (right

click).
d. Using the Copy icon in the toolbar.

2. The application shall allow users to
paste the contents of the system
clipboard into the current document.
a. Using a Paste option in the Edit menu.
b. Using a keyboard shortcut: CTRL-V
c. Using the Paste option in the context menu (right

click).
d. Using the Paste icon in the toolbar.

Q: How might you go about
implementing this requirement?

* See what we did there?

Copy

Paste

2

Embedded Code
public void menuClicked() {

 Clipboard clipboard = application.getClipboard();

 String contents = clipboard.getContents();

 Document document = application.getDocument();

 document.paste(contents);

}

public void keyboardShortcutUsed() {

 Clipboard clipboard = application.getClipboard();

 String contents = clipboard.getContents();

 Document document = application.getDocument();

 document.paste(contents);

}

A: Embed the code into each of the
widgets (buttons, menus, etc.) that can
be used to perform the paste function.

Q: What are the drawbacks to this
solution?

A: The most obvious is code duplication.
What else?

A number of custom widgets must be
created by extending buttons, menu
items, etc. This leads to class explosion
and lower cohesion (how?).

There is also a high degree of coupling
between the application, document,
clipboard, and various widgets.

3

A Paste Method
public void paste() {

 Clipboard clipboard = getClipboard();

 String contents = clipboard.getContents();

 Document document = getDocument();

 document.paste(contents);

}

public void menuClicked() {

 application.paste();

}

A: Use extract method to encapsulate
the code in a method, and call that
method from each of the appropriate
widgets.

Q: What are the drawbacks to this
solution?

A: Again, a number of custom widgets
must be created and coupled with the
main application. This causes class
explosion and violates single
responsibility (why?).

public void keyboardShortcutUsed() {

 application.paste();

}

4

A Command INterface

5

Begin by defining an interface to
represent a command that can be
executed by the user in the word
processing application.

public interface Action {

 public void performAction();

}

Next, create a concrete command to implement the
copy action.

public class Copy implements Action {

 private WordProc application;

 public void performAction() {

 application.copy();

 }

}

Create a separate concrete command for each user
action, e.g. paste, save, open, etc. Each will call some
method(s) on a specific receiver, e.g. the main
application class that defines the copy and past
methods.

Generic Widgets

6

public class Button {

 private Action action;

 public Button(Action action) {

 this.action = action;

 }

 public void buttonClicked() {

 action.performAction();

 }

}

Modify each of your widgets (buttons, menu
items, etc.) so that it can be created with an
instance of your command interface.

When the user interacts with the widget, it
invokes the method on its command.

The widget does not need any information
about what the command actually does. It just
needs to invoke its command.

This means that the same, generic widget can
be reused many times in the application with
different commands.

GoF Command Structure Diagram
Client

Receiver

+ action()

Invoker Command
<<interface>>

+ execute()

ConcreteCommand

+ execute()

state

receiver.action()

Intent: Encapsulate a request as an object, thereby letting
you parameterize clients with different requests, queue or
log requests, and support undoable operations.

(Behavioral) 7

Copy/Paste Command Design

8

Each widget (button, menu, etc.) is the
invoker of some command.

Each concrete command executes one
or more methods on some receiver, e.g.
the main application.

The invokers do not need to know
anything about the specific command -
only when to invoke it.

GoF Pattern Card Name: Copy Paste Subsystem GoF Pattern: Command

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

WordProc Client, Receiver The main word processing application. The application is responsible for
creating concrete commands and binding them to their receivers when
the application loads. As the information expert for both the clipboard
and the currently opened document, it is also the receive for the copy
and paste commands.

Action Command Defines the interface for a user action in the word processing
application. The actionPerformed method is invoked each time that the
command should perform its related task.

Menu Invoker One of many generic menu items. Each menu item is associated with a
specific action. When the menu item is used, it invokes the action.

Button Invoker One of many generic buttons. Each button is associated with a specific
action. When the button is clicked, it invokes the action.

Copy ConcreteCommand A concrete command that performs a copy operation by calling the copy
method on the word processing application. This copies the currently
selected text to the system clipboard.

Paste ConcreteCommand A concrete command that performs a paste operation by calling the
paste method on the word processing application. This pastes the
contents of the system clipboard into the currently opened document.

Deviations from the standard pattern: The main application is both the Client and the Receiver in this
implementation.

Requirements being covered: 1.a-1.d - Users shall be able to copy selected text using menus, buttons, etc. 2.a.-2.d. Users
shall be able to paste copied text using menus, buttons, etc.

Sorry about the eye chart, but this is
a lot of information to pack into one
slide!

Note that each concrete command
is documented separately - they are
not combined into a single row.

One of the most common errors in
documentation of the Command
Pattern is combining multiple
commands (up to an including all of
them) into the same row.

Remember, your documentation
should be written as though a
separate engineering team is going to
implement the system. Include
sufficient detail!

Where is the Client?
● The client in the Command Pattern

plays a somewhat different role than
the client in other patterns that we
have studied; it is the part of the
system that instantiates a concrete
command and binds it to its receiver.

● Depending on the implementation, this
may occur only once when the system
starts up.
○ The client may not be involved

after that.

11

Some implementations of the Command
Pattern will create all of the concrete
commands at startup and reuse them.

In this case, the client’s role is brief (but
important).

In other implementations, concrete
commands are created on demand - the
client will be involved throughout the
lifetime of the application.

12

13

Here the UI is playing the role of "client" as it creates
the commands, invokers, and receivers and binds
them together when the application starts up.

This is only one possible implementation. The
commands do not necessarily need to be
created/bound on startup.

Command
Encapsulating the details of performing an
operation allows separation of concerns in
space and time.
● Invocation is decoupled from execution.

○ For example, in MVC the invoker (the view) is
decoupled from the executor (the controller
and/or model).

● Execution can happen at a different time
than invocation.

○ How?
● You can create sequences of commands for

later execution.
○ Commands are objects. They can be bundled

together (e.g. in a collection) like any other
objects.

○ How can this support macro commands?
○ How can this support undo/redo? 14

Command Decisions
The Command pattern provides the
designer with several choices:
● How smart is the command object?

○ Only binds the command to the receiver and
action.

○ Performs the operation itself.

● When is a command instantiated?
○ Prior to invocation.
○ Upon invocation.

● When is the receiver bound to the
command?

○ When the command is instantiated.
○ When the command is invoked.

15

Consider that part of the intent of the
Command Pattern is to “...support
undoable operations….”

Q: How might such a requirement
impact how “smart” the commands
need to be? Or when the commands
are instantiated?

Command
There are several consequences to
implementing the command pattern:
● Decouples the object that invokes an

operation from the object that knows how
to perform it.

● Commands are first-class objects that
can be manipulated and extended like any
other object.

● Commands can be assembled into composite
commands (e.g. macros).

● New commands can be easily added because
existing classes do not need to be
changed (similar to Strategy).

● Lots of little command classes.
16

Things to Consider

1. How does Command affect the

overall cohesion in the system?

2. The coupling?

3. How does it support the

Open/Closed Principle?

4. What other design principles

might command make better or

worse?

5. How would you decide when to

instantiate concrete commands?

